Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

Identifieur interne : 000449 ( Main/Exploration ); précédent : 000448; suivant : 000450

Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

Auteurs : Alvaro Garcia [Australie] ; Chia-Chi Liu [Australie] ; Flemming Cornelius [Danemark] ; Ronald J. Clarke [Australie] ; Helge H. Rasmussen [Australie]

Source :

RBID : pubmed:26958887

Descripteurs français

English descriptors

Abstract

The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+).

DOI: 10.1016/j.bpj.2016.01.014
PubMed: 26958887
PubMed Central: PMC4788738


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.</title>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; School of Chemistry, University of Sydney, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; School of Chemistry, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cornelius, Flemming" sort="Cornelius, Flemming" uniqKey="Cornelius F" first="Flemming" last="Cornelius">Flemming Cornelius</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedicine, University of Aarhus, Aarhus, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Biomedicine, University of Aarhus, Aarhus</wicri:regionArea>
<wicri:noRegion>Aarhus</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Ronald J" sort="Clarke, Ronald J" uniqKey="Clarke R" first="Ronald J" last="Clarke">Ronald J. Clarke</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemistry, University of Sydney, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia. Electronic address: helge.rasmussen@sydney.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26958887</idno>
<idno type="pmid">26958887</idno>
<idno type="doi">10.1016/j.bpj.2016.01.014</idno>
<idno type="pmc">PMC4788738</idno>
<idno type="wicri:Area/Main/Corpus">000454</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000454</idno>
<idno type="wicri:Area/Main/Curation">000454</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000454</idno>
<idno type="wicri:Area/Main/Exploration">000454</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.</title>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; School of Chemistry, University of Sydney, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; School of Chemistry, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cornelius, Flemming" sort="Cornelius, Flemming" uniqKey="Cornelius F" first="Flemming" last="Cornelius">Flemming Cornelius</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedicine, University of Aarhus, Aarhus, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Biomedicine, University of Aarhus, Aarhus</wicri:regionArea>
<wicri:noRegion>Aarhus</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Ronald J" sort="Clarke, Ronald J" uniqKey="Clarke R" first="Ronald J" last="Clarke">Ronald J. Clarke</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemistry, University of Sydney, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia. Electronic address: helge.rasmussen@sydney.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="eISSN">1542-0086</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Diffusion (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Ion Channel Gating (drug effects)</term>
<term>Male (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Potassium (pharmacology)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Subunits (metabolism)</term>
<term>Rabbits (MeSH)</term>
<term>Sarcolemma (drug effects)</term>
<term>Sarcolemma (metabolism)</term>
<term>Sodium (metabolism)</term>
<term>Sodium-Potassium-Exchanging ATPase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Diffusion (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Lapins (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Ouverture et fermeture des portes des canaux ioniques (effets des médicaments et des substances chimiques)</term>
<term>Potassium (pharmacologie)</term>
<term>Sarcolemme (effets des médicaments et des substances chimiques)</term>
<term>Sarcolemme (métabolisme)</term>
<term>Sodium (métabolisme)</term>
<term>Sodium-Potassium-Exchanging ATPase (métabolisme)</term>
<term>Sous-unités de protéines (métabolisme)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Protein Subunits</term>
<term>Sodium</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Ion Channel Gating</term>
<term>Oxidative Stress</term>
<term>Sarcolemma</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Ouverture et fermeture des portes des canaux ioniques</term>
<term>Sarcolemme</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Sarcolemma</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Sarcolemme</term>
<term>Sodium</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Diffusion</term>
<term>Male</term>
<term>Protein Conformation</term>
<term>Rabbits</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Diffusion</term>
<term>Lapins</term>
<term>Mâle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26958887</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1542-0086</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys J</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.</ArticleTitle>
<Pagination>
<MedlinePgn>1099-109</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bpj.2016.01.014</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0006-3495(16)00089-8</ELocationID>
<Abstract>
<AbstractText>The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). </AbstractText>
<CopyrightInformation>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Alvaro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; School of Chemistry, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chia-Chi</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cornelius</LastName>
<ForeName>Flemming</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedicine, University of Aarhus, Aarhus, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clarke</LastName>
<ForeName>Ronald J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rasmussen</LastName>
<ForeName>Helge H</ForeName>
<Initials>HH</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia. Electronic address: helge.rasmussen@sydney.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.2.2.13</RegistryNumber>
<NameOfSubstance UI="D000254">Sodium-Potassium-Exchanging ATPase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004058" MajorTopicYN="N">Diffusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015640" MajorTopicYN="N">Ion Channel Gating</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012508" MajorTopicYN="N">Sarcolemma</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000254" MajorTopicYN="N">Sodium-Potassium-Exchanging ATPase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26958887</ArticleId>
<ArticleId IdType="pii">S0006-3495(16)00089-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.bpj.2016.01.014</ArticleId>
<ArticleId IdType="pmc">PMC4788738</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Circ Res. 2009 Jul 17;105(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 6;287(15):12353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22354969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2010 Jan;48(1):112-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19835882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2002 Nov;283(5):C1511-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2003 Mar 15;57(4):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2003 Jun;84(6):4157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12770918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2003 Jun 13;92(11):1182-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2004 Aug;87(2):1360-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15298938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2004 Nov;87(5):3351-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1974 Jul 12;356(1):53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4276443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 May 2-8;315(6014):63-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2581143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 1988 Feb;411(2):204-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2451806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 1989 Sep;94(3):539-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2607334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1991 Oct;261(4 Pt 2):H1344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1681743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 1992 May;26(5):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1332825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1992 Sep;455:235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1336550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1993 Jun;465:699-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8229858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Mar 11;263(5152):1429-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8128223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1995 Feb;268(2 Pt 1):C366-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7864075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):7104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol Scand. 1996 Mar;156(3):213-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8729681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1996 Oct 1;98(7):1650-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8833915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 1997 Dec;22(6):431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9502192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1998 Jun 1;509 ( Pt 2):457-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9575295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Nov;275(5 Pt 2):H1808-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9815089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2005 Jul;39(1):113-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15907930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1:S43-S46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16686681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol Sci. 2006 Feb;56(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16779919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2007 Jul 1;75(1):109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17442282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 13;450(7172):1036-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18075584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2008 Apr 1;78(1):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18203708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2013 Sep 13;113(7):e50-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23897695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2012 May 11;110(10):1364-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22581922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2012 Sep 1;95(4):480-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22739122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2012 Aug;22(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22749193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2013 Feb;9(2):69-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23334544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2013 Jun 15;591(12):2999-3015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2013 Aug;61:11-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23774049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Oct;1827(10):1205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23850548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Oct 4;342(6154):123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24051246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Oct 10;502(7470):201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24089211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Mar 13;156(6):1235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24630725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2014 Dec 15;592(24):5355-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25362154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2015 Feb 1;105(2):171-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25514933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Oct;1848(10 Pt A):2430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2010 Jul;48(1):54-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20667414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 21;459(7245):446-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 26;286(34):29882-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22159993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Danemark</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
</region>
<name sortKey="Clarke, Ronald J" sort="Clarke, Ronald J" uniqKey="Clarke R" first="Ronald J" last="Clarke">Ronald J. Clarke</name>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Cornelius, Flemming" sort="Cornelius, Flemming" uniqKey="Cornelius F" first="Flemming" last="Cornelius">Flemming Cornelius</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000449 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000449 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26958887
   |texte=   Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26958887" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020